Effects of low protein diets on acid‐base balance, electrolyte balance, intestinal structure, and amino acid transport in piglets

Author:

Lin Qian1ORCID,Tu Xiaodian1ORCID,Li Xin1ORCID,Gou Feiyang1ORCID,Gao Hui2,Lu Zeqing1,Feng Jie1,Ying Yongfei2,Hu Caihong1ORCID

Affiliation:

1. College of Animal Sciences, Key Laboratory of Molecular Animal Nutrition Zhejiang University, Ministry of Education Hangzhou China

2. Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province Hangzhou China

Abstract

AbstractReducing the dietary crude protein (CP) could effectively reduce pressure on protein ingredient supplies. However, few data have been reported about the extent to which CP can be reduced and whether limiting the use of soybean meal leads to electrolyte imbalance. In this experiment, using the low protein (LP) diet [2% lower than NRC (2012)], seventy‐two piglets (35 days old) were randomly divided into 2 groups with 6 replicates of 6 piglets each: CON group (CP = 18.5%) and LP group (CP = 16.5%), to investigate the effect of the LP diet on electrolyte balance, acid‐base balance, intestinal structure and amino acid transport in piglets. The results revealed that the LP diet decreased the average daily gain and dietary CP digestibility, and damaged the villi structure of the small intestine. Compared with the CON diet, the potassium content decreased and the chlorine content increased in the LP diet, and similar trends were shown in piglet serum. The arterial pH, pCO2, HCO3, and base excess of piglets in the LP group were lower than those in the CON group, while pO2 was higher than those in the CON group. Interestingly, the LP diet significantly increased the lysine content in piglet serum and significantly decreased the levels of arginine, leucine, and glutamic acid. Furthermore, the LP diet significantly affected the expression of some amino acid transport vectors (B0AT1, EAAC1, and y+LAT1). In summary, these findings suggested that the LP diet leads to acid‐base imbalance, amino acid transport disorder and amino acids imbalance in piglets, and the dietary electrolyte may be a key factor in the impact of the LP diet on piglet growth performance and intestinal health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3