ZMFISC: Zhu‐Ming data set with a convolutional neural network for identifying Indo‐Pacific humpback dolphins (Sousa chinensis)

Author:

Yang Minghao12ORCID,Wu Zhongrui1,Zang Xiqing12,Jin Changlong1,Zhu Qian1

Affiliation:

1. Shandong University Weihai People's Republic of China

2. Beijing Research Institute of Automation for Machinery Industry Beijing People's Republic of China

Abstract

AbstractThe Indo‐Pacific humpback dolphin (Sousa chinensis) is a small‐toothed whale species that inhabits estuaries and shallow coastal waters from the eastern Indian Ocean to the western Pacific, and faces significant negative impacts from anthropogenic activities. The noninvasive Photo‐identification method enables individual identification and abundance estimation based on natural markings of cetaceans without disrupting their natural behaviors. Currently, the identification of S. chinensis using photographs relies primarily on time‐intensive visual recognition by experienced researchers. Through field surveys conducted in the west Huangmao Sea area from 2012 to 2021, we compiled the Zhu‐Ming data set focusing on S. chinensis (ZMSC), consisting of 479 individuals and 5,196 photos. Utilizing the ZMSC, we proposed a Few‐Shot Identification method for S. chinensis (FISC), which achieved 85.93% identification Top‐1 accuracy. The implementation of proper preprocessing steps and data augmentation techniques has significantly enhanced the performance of FISC, while visualizing network weights has improved its interpretability. Despite the remaining challenges of data imbalance and the inability to automatically allocate new labels, ZMFISC alleviates the challenge of the current heavy reliance on time‐intensive visual recognition methods by researchers for individual identification of S. chinensis and provide a valuable tool to enhance future conservation efforts for S. chinensis.

Funder

Ministry of Agriculture and Rural Affairs of the People's Republic of China

Ocean Park Conservation Foundation, Hong Kong

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3