Biotic and abiotic drivers of harbor seal (Phoca vitulina) fine‐scale densities in the Salish Sea

Author:

Brusa Jamie L.1ORCID,Pearson Scott F.2ORCID,Raphael Martin G.3,Gardner Beth1

Affiliation:

1. School of Environmental and Forest Science, University of Washington Seattle Washington

2. Wildlife Science Division, Washington Department of Fish and Wildlife Olympia Washington

3. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station Olympia Washington

Abstract

AbstractUnderstanding relationships between environmental characteristics and variation in species occurrence and density can provide information for managing human activities, protected species, and species of commercial importance in a dynamic system. To identify environmental drivers associated with variation in harbor seal (Phoca vitulina) densities in the Salish Sea, Washington, we analyzed 20 years of boat‐based survey data and environmental covariates using a hierarchical distance sampling model. We included spatial, temporal, and spatiotemporal environmental covariates in our model and produced fine‐scale predictive maps displaying in‐water estimated densities from our model results. We found that spatial covariates were the strongest predictors for harbor seal densities in the Salish Sea. Harbor seals were more abundant closer to major river mouths, near shore, in shallower waters, and in areas with more haul‐out sites. Additionally, harbor seal density varied with shoreline type. Changes in predicted harbor seal spatial use of the Salish Sea varied but with little difference between breeding/molting and nonbreeding/nonmolting seasons. Our results revealed spatiotemporal variation in harbor seal fine‐scale density in the Salish Sea, which are particularly important for conservation planning, as spatiotemporal variation in harbor seal density can exert heterogenous top‐down effects on prey species populations, some of which are threatened.

Funder

U.S. Navy

U.S. Fish and Wildlife Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3