Earthquake Early Warning System (EEWS) empowered by Time‐Dependent Neo‐Deterministic Seismic Hazard Assessment (TD‐NDSHA)

Author:

Zhang Yan1,Wu Zhongliang12,Romanelli Fabio23,Vaccari Franco3,Peresan Antonella4,Li Jiawei5,Panza Giuliano F.167

Affiliation:

1. Institute of Geophysics, China Earthquake Administration Beijing China

2. Institute of Earthquake Forecasting, China Earthquake Administration Beijing China

3. Department of Mathematics and Geosciences University of Trieste Trieste Italy

4. National Institute of Oceanography and Applied Geophysics – OGS Udine Italy

5. Institute of Risk Analysis, Prediction and Management (Risks‐X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech) Shenzhen China

6. Beijing University of Civil Engineering and Architecture (BUCEA) Beijing China

7. Associate to the National Institute of Oceanography and Applied Geophysics – OGS Italy

Abstract

AbstractIn the network‐based on‐site earthquake early warning system (EEWS), the ‘blind zone’, namely the zone where the issued warning arrives later than the destructive S and surface waves, is one of the challenges affecting its effectiveness. The ‘blind zone’ is determined by the interstation distance, or equivalently the density of seismic stations, of the network. In this paper, we suggest a practical approach according to which, when in a region a temporary increase of seismic hazard is declared, additional stations are deployed in such a way that the blind zone is temporarily reduced. In the procedure, the time‐dependent neo‐deterministic seismic hazard assessment (TD‐NDSHA) plays a vital role in the identification of the regions potentially exposed to high macroseismic intensities. As a showcase example, we consider the scenario of year 2014 at the Sichuan‐Yunnan border of southwest China. The TD‐NDSHA is based on the standard NDSHA procedure at regional scale (bedrock conditions), with the ‘controlling earthquakes’ defined on the basis of the Annual Consultation. We show that the ‘blind zone’ can be reduced in the identified areas of interest (e.g., MMI ≥ VI), by deploying a limited number of additional seismic stations. In the case where false alarms can be tolerated, significant reduction of the ‘blind zone’ can be implemented by moving from a network‐based EEWS to a single‐sensor‐based EEWS and skipping the process of location and magnitude‐determination/prediction procedures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3