Evaluation of indica‐type DEP1 mutant allele for rice (Oryza sativa) yield improvement and development of allele‐specific co‐dominant marker

Author:

Sen Poulomi12ORCID,Purkaystha Shampa13,Bhattacharyya Somnath1ORCID

Affiliation:

1. Department of Genetics and Plant Breeding, Crop Research Unit Bidhan Chandra Krishi Viswavidyalaya Nadia West Bengal India

2. School of Agricultural Sciences Sister Nivedita University Kolkata West Bengal India

3. Department of Genetics & Plant Breeding and Seed Science & Technology Centurion University of Technology and Management Paralakhemundi Odisha India

Abstract

AbstractErect panicles with enhanced grain numbers can rationally utilize solar energy for dry matter accumulation. Only in japonica cultivars an inactive natural nonsense mutant allele of DEP1 has been reported to pleiotropically improve panicle architecture, nitrogen use efficiency, nitrogen and dry matter translocation and strength of the stem. Genomic sequence comparison of DEP1 in indica, aus and aromatic genotypes of West Bengal led to the identification of four natural allelic variants based on three single nucleotide polymorphisms (SNPs) on intron 1, two SNPs on exon 5 and two deletions on intron 2. Among them, a yield favourable missense mutant allele of DEP1 with two amino acid substitutions from Patnai 23 has been identified, and an allele‐specific co‐dominant marker based on the SNP (A/G) at 333rd position of exon 5 was designed. Assessment of DEP1Patnai 23 allele for yield improvement was examined in RILs and NILs developed from Patnai23 × N22 as N22 carries wild‐type allele. The relative abundance of DEP1 transcript in young panicles was twice as high in Patnai 23 than in N22. RIL‐DEP1Patnai 23 and NIL‐DEP1Patnai 23 showed enhanced grain number per panicle and total yield per plant compared to RIL‐DEP1N22 and NIL‐DEP1N22 allele. This newly identified DEP1 allele and marker will accelerate MAS to improve rice yield precisely.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3