Modelling animal social networks: New solutions and future directions

Author:

Farine Damien R.123ORCID

Affiliation:

1. Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia

2. Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland

3. Department of Collective Behaviour Max Planck Institute of Animal Behavior Konstanz Germany

Abstract

AbstractResearch Highlight: Ross, C. T., McElreath, R., & Redhead, D. (2023). Modelling animal network data in R using STRAND. Journal of Animal Ecology. https://doi.org/10.1111/1365‐2656.14021. One of the most important insights in ecology over the past decade has been that the social connections among animals affect a wide range of ecological and evolutionary processes. However, despite over 20 years of study effort on this topic, generating knowledge from data on social associations and interactions remains fraught with problems. Redhead et al. present an R package—STRAND—that extends the current animal social network analysis toolbox in two ways. First, they provide a simple R interfaces to implement generative network models, which are an alternative to regression approaches that draw inference by simulating the data‐generating process. Second, they implement these models in a Bayesian framework, allowing uncertainty in the observation process to be carried through to hypothesis testing. STRAND therefore fills an important gap for hypothesis testing using network data. However, major challenges remain, and while STRAND represents an important advance, generating robust results continues to require careful study design, considerations in terms of statistical methods and a plurality of approaches.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3