Affiliation:
1. Department of Arctic and Marine Biology The Arctic University of Norway (UiT) Tromsø Norway
2. Norwegian Institute for Nature Research (NINA) Trondheim Norway
3. Norwegian Institute for Nature Research (NINA), FRAM Centre Tromsø Norway
4. Centre for Biodiversity Dynamics (CBD) Norwegian University of Science and Technology (NTNU) Trondheim Norway
5. UK Centre for Ecology & Hydrology Penicuik UK
Abstract
AbstractActuarial senescence, the decline of survival with age, is well documented in the wild. Rates of senescence vary widely between taxa, to some extent also between sexes, with the fastest life histories showing the highest rates of senescence. Few studies have investigated differences in senescence among populations of the same species, although such variation is expected from population‐level differences in environmental conditions, leading to differences in vital rates and thus life histories.We predict that, within species, populations differing in productivity (suggesting different paces of life) should experience different rates of senescence, but with little or no sexual difference in senescence within populations of monogamous, monomorphic species where the sexes share breeding duties.We compared rates of actuarial senescence among three contrasting populations of the Atlantic puffinFratercula arctica. The dataset comprised 31 years (1990–2020) of parallel capture–mark–recapture data from three breeding colonies, Isle of May (North Sea), Røst (Norwegian Sea) and Hornøya (Barents Sea), showing contrasting productivities (i.e. annual breeding success) and population trends. We used time elapsed since first capture as a proxy for bird age, and productivity and the winter North Atlantic Oscillation Index (wNAO) as proxies for the environmental conditions experienced by the populations within and outside the breeding season, respectively.In accordance with our predictions, we found that senescence rates differed among the study populations, with no evidence for sexual differences. There was no evidence for an effect of wNAO, but the population with the lowest productivity, Røst, showed the lowest rate of senescence. As a consequence, the negative effect of senescence on the population growth rate (λ) was up to 3–5 times smaller on Røst (Δλ = −0.009) than on the two other colonies.Our findings suggest that environmentally induced differences in senescence rates among populations of a species should be accounted for when predicting effects of climate variation and change on species persistence. There is thus a need for more detailed information on how both actuarial and reproductive senescence influence vital rates of populations of the same species, calling for large‐scale comparative studies.
Funder
Miljødirektoratet
Natural Environment Research Council
Norges Forskningsråd
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference80 articles.
1. The breeding performance of puffins Fratercula arctica on Røst, northern Norway in 1979–1985;Anker‐Nilssen T.;Fauna Norvegica, Series C, Cinclus,1987
2. Status, origin and population impacts of Atlantic puffins killed in a mass mortality event in SW Norway early 2016;Anker‐Nilssen T.;Seabird,2017
3. Fit is fat: winter body mass of Atlantic Puffins Fratercula arctica
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献