Evolution of ontogenetic niches promotes species coexistence in a surprising way

Author:

Barbour Matthew A.1ORCID

Affiliation:

1. Department of Biology Université de Sherbrooke Sherbrooke Quebec Canada

Abstract

AbstractAnimals usually change their trophic niche during their ontogeny, which has fundamental consequences for their population dynamics and interactions with other species. Theory predicts that ontogenetic niche differences between species can influence their ability to coexist. However, we lack empirical evidence for this coexistence mechanism and the role of evolution in shaping species' ontogenetic niches. Here, Anaya‐Rojas et al. (2023) show that contemporary evolution of ontogenetic niches likely contributes to the coexistence of two competing fish species (killifish and guppies) in streams on the Caribbean Island of Trinidad. As predicted by coexistence theory, they found that the weaker competitor (killifish) exhibited a relatively large ontogenetic niche shift, feeding at higher trophic levels as it grew, in streams where competition with the stronger competitor (guppies) was intense. Intuition suggests that the weaker competitor should experience strong selection on its ontogenetic niche in a different competitive environment, but this was not the case. Instead, they found that the stronger competitor evolved a more compressed ontogenetic niche, where guppies fed at a low trophic level regardless of their body size, when competition was intense. Although the mechanism underlying this surprising result remains to be determined, this work points to the importance of taking a food web perspective—explicitly accounting for consumer–resource interactions—to understand the outcome of eco‐evolutionary dynamics. Given that ontogenetic niche shifts are extremely common in animals, understanding the evolutionary ecology of these niche shifts should be a priority for future research on species coexistence.

Funder

Natural Sciences and Engineering Research Council of Canada

Université de Sherbrooke

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3