Community form, function and phylogenetic diversity respond differently across microhabitat and recovery gradients

Author:

Barden Phillip12ORCID

Affiliation:

1. Department of Biological Sciences New Jersey Institute of Technology Newark New Jersey USA

2. Division of Invertebrate Zoology American Museum of Natural History New York New York USA

Abstract

AbstractResearch Highlight: Hoenle, P. O., Staab, M., Donoso, D. A., Argoti, A., & Blüthgen, N. (2023). Stratification and recovery time jointly shape ant functional reassembly in a neotropical forest. Journal of Animal Ecology, https://doi.org/10.1111/1365‐2656.13896. Space, time and abiotic variation are primary axes across investigations of community ecology and disturbed ecosystems offer tractable systems for assessing their relative impact. While recovering forests can act as isolated case studies in understanding community assembly, it is not well understood how individual microhabitats respond to recovery and ultimately shape community attributes. Hoenle et al. (2023) leverage the ubiquity and microhabitat‐specific diversity of ants across a gradient from active agricultural sites to old‐growth forest and assess how recovery and stratification together shape communities. The authors find distinct stratification across phylogenetic, functional and trait diversity as forest recovery time increases, while also recovering unique recovery trajectories contingent on trait sampling. While stratified, phylogenetic and functional diversity did not increase along this recovery gradient. Ten out of 13 sampled traits were jointly influenced by both stratification and recovery time. In contrast to intuitive predictions, a majority of trait means converged throughout the recovery period. Results highlight the multifaceted nature of recovery‐based community assembly and the capacity of multidimensional sampling to uncover surprising patterns in ecologically diverse lineages.

Funder

Division of Environmental Biology

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3