Taylor's law on abundance unravels the role of traits and environmental conditions on population dynamics

Author:

Arim Matías12ORCID,Illarze Mariana12ORCID

Affiliation:

1. Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional Este (CURE) Universidad de la República Maldonado Uruguay

2. CICADA, Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático Universidad de la República Maldonado Uruguay

Abstract

Abstract The variance–mean scaling in population abundance or Taylor's power law (TPL) has been reported hundreds of times and is related to ecological processes such as competition, dispersal or territoriality. In this sense, the TPL was extensively validated to resume population variability and to show the action of ecological mechanisms. Baumgartner and Peláez (2024) combine databases of fish dynamics along the United States, species traits, species phylogeny and climatic conditions, estimating the TPL for 180 species along 972 populations. The observed scaling suggests that the variability of the population decreases with abundance. Notably, 68% of the variation in the variance–mean scaling was explained by species traits and environmental conditions. Specifically, the life history of the species, associated with its body size, was the main explanation for the TPL, also reporting that the variability of the population increased faster with mean abundance in the headwaters than in other river sections. Equally important, the diversity of the community in which the species were inserted did not affect the scaling. These results provide overwhelming evidence on the nature of TPL on large geographic scales and how they are affected by species biology and environmental conditions. A contribution that should motivate further empirical and theoretical analysis of the TPL and its determinants.

Funder

Agencia Nacional de Investigación e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3