Long transients and dendritic network structure affect spatial predator–prey dynamics in experimental microcosms

Author:

Green Matthew D.1ORCID,Woodie Clara A.1ORCID,Whitesell Megan1ORCID,Anderson Kurt E.1ORCID

Affiliation:

1. Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA

Abstract

Abstract Spatial dynamics can promote persistence of strongly interacting predators and prey. Theory predicts that spatial predator–prey systems are prone to long transients, meaning that the dynamics leading to persistence or extinction manifest over hundreds of generations. Furthermore, the form and duration of transients may be altered by spatial network structure. Few empirical studies have examined the importance of transients in spatial food webs, especially in a network context, due to the difficulty in collecting the large scale and long‐term data required. We examined predator–prey dynamics in protist microcosms using three experimental spatial structures: isolated, river‐like dendritic networks and regular lattice networks. Densities and patterns of occupancy were followed for both predators and prey over a time scale that equates to >100 predator and >500 prey generations. We found that predators persisted in dendritic and lattice networks whereas they went extinct in the isolated treatment. The dynamics leading to predator persistence played out over long transients with three distinct phases. The transient phases showed differences between dendritic and lattice structures, as did underlying patterns of occupancy. Spatial dynamics differed among organisms in different trophic positions. Predators showed higher local persistence in more connected bottles while prey showed this in more spatially isolated ones. Predictions based on spatial patterns of connectivity derived from metapopulation theory explained predator occupancy, while prey occupancy was better explained by predator occupancy. Our results strongly support the hypothesized role of spatial dynamics in promoting persistence in food webs, but that the dynamics ultimately leading to persistence may occur with long transients which in turn may be influenced by spatial network structure and trophic interactions.

Funder

University of California

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3