Time for a paradigm shift? Small carnivores' sensitivity highlights the importance of monitoring mid‐rank predators in future global change studies

Author:

Do Linh San Emmanuel1ORCID

Affiliation:

1. Department of Zoology & Entomology University of Fort Hare Alice South Africa

Abstract

AbstractResearch Highlight: Jachowski, D. S., Marneweck, C. J., Olfenbuttel, C., & Harris, S. N. (2024). Support for the size‐mediated sensitivity hypothesis within a diverse carnivore community. Journal of Animal Ecology, https://doi.org/10.1111/1365‐2656.13916. A current paradigm in ecological research suggests that top predators are suitable sentinel species to identify ecosystem dysfunctions and monitor the effects of climate change. However, the adequacy of top predators to systematically take this function may be mistakenly inferred or unintentionally conflated from the fact that these species are regarded as biodiversity indicators or keystone, umbrella and flagship species in most ecosystems. Regarding terrestrial mammalian carnivores (order Carnivora), some researchers recently suggested that the smaller species likely possess a higher sensitivity to environmental changes than large carnivores because of their biological attributes and their intermediate position in food webs. To test this hypothesis, Jachowski et al. (2024) used camera trapping followed by occupancy and structural equation modelling to explore the dynamics of a diverse carnivore community and the factors that influence them. Their results confirmed that small carnivores are more sensitive to habitat changes and are interconnected by a greater number of significant pathways compared with larger carnivores. This support for the size‐mediated sensitivity hypothesis strengthens the proposition that small carnivores (and other mid‐rank predators) are ideal sentinel species for monitoring the effects of the wide range of contemporary and future environmental changes. Time will tell whether this new ‘middle‐out ecology’ paradigm will be considered in future global change studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3