Interactions between fitness components across the life cycle constrain competitor coexistence

Author:

Gómez‐Llano Miguel12ORCID,Boys Wade A.2,Ping Taylor2,Tye Simon P.2ORCID,Siepielski Adam M.2ORCID

Affiliation:

1. Department of Environmental and Life Sciences Karlstad University Karlstad 65188 Sweden

2. Department of Biological Sciences University of Arkansas Fayetteville Arkansas 72701 USA

Abstract

Abstract Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question. Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency‐dependent population growth, which has a key role stabilizing local competitor coexistence. We conducted field experiments in three lakes manipulating relative frequencies of two Enallagma damselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry‐over effects between life stages to decompose the relative effect of each fitness component generating frequency‐dependent population growth. This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes. Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population‐level variation.

Funder

National Science Foundation

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3