Do Simple Analytical Models Capture Complex Fractured Bedrock Hydraulics? Oscillatory Flow Tests Suggest Not

Author:

Patterson Jeremy R.ORCID,Cardiff Michael1ORCID

Affiliation:

1. Department of Geoscience, University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractFractured sedimentary bedrock aquifers represent complex flow systems that may contain fast, fracture‐dominated flow paths and slower, porous media‐dominated flow paths. Thus, characterizing the dynamics of flow and transport through these aquifers remains a fundamental hydrogeologic challenge. Recent studies have demonstrated the utility of a novel hydraulic testing approach, oscillatory flow testing, in field settings to characterize single bedrock fractures embedded in low‐porosity sedimentary bedrock. These studies employed an idealized analytical model assuming Darcian flow through a nondeforming, constant‐aperture, nonleaky fracture for data interpretation, and reported period‐dependent effective fracture flow parameters. Here, we present the application of oscillatory flow testing across a range of frequencies and inter‐well spacings on a fracture embedded in poorly cemented sedimentary bedrock with considerable primary porosity at the Field Site for Research in Fractured Sedimentary Rock. Consistent with previous studies, we show an apparent period‐dependence in returned flow parameters, with hydraulic diffusivity decreasing and storativity increasing with increasing oscillation period, when assuming an idealized fracture conceptual model. We present simple analyses that examine non‐Darcian flow and borehole storage effects as potential test design artifacts and a simple analytical model that examines fluid leakage to the surrounding host rock as a potential hydraulic mechanism that might contribute to the period‐dependent flow parameters. These analyses represent a range of conceptual assumptions about fracture behavior during hydraulic testing, none of which account for the measured responses during oscillatory flow testing, leading us to argue that other hydraulic processes (e.g., aperture heterogeneity and/or fracture hydromechanics) are necessary to accurately represent pressure propagation through fractured sedimentary bedrock.

Funder

Division of Earth Sciences

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3