Effects of Soil Type and Thermal Boundary on Predicting Temperature Profiles and Groundwater Fluxes

Author:

Chang Chia‐Hao1,Lin Ying‐Fan1ORCID,Shiau Yo‐Jin1,Tsai Yi‐Zhih1ORCID,Tsai Jui‐Pin

Affiliation:

1. Department of Bioenvironmental Systems Engineering National Taiwan University Taipei Taiwan

Abstract

AbstractIn the last few years, several articles have studied heat as a groundwater tracer and developed analytical geothermal solutions to predict the subsurface temperature and groundwater fluxes. These solutions can be sorted into steady‐state and transient solutions. The steady‐state solutions cannot describe the time‐varying subsurface temperature, while the transient solutions ignore subsurface thermal boundary effects. Moreover, soil type may be another crucial factor significantly affecting the prediction results. This study compares six existing classical analytical solutions to examine the effects of soil types and subsurface thermal boundaries on simulating temperature‐depth profiles and estimating groundwater fluxes. Several synthetic cases are built by considering the common soil types, sand and clay, to demonstrate their effects on predicting the profiles. A field case is used to show the effect of subsurface thermal boundaries on the groundwater flux estimated by an inverse approach. The study results indicate that the soil types have significant influences on simulating the profiles, and the influences grow with time. Some existing solutions may give inaccurate estimations of the field groundwater flux since they merely consider the heat source from the temperature variations on the ground surface but ignore possible thermal boundary effects in the subsurface. These findings will be valuable to those applying heat as a tracer to investigate infiltration.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Computers in Earth Sciences,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3