Significant association of mutations close to LCORL gene with growth performance in Zhedong white geese (Anser cygnoides)

Author:

Yang Yunzhou1,Wang Cui1,Li Guangquan1,Wang Xianze1,Qiu Songyin2,Liu Yi1,Wang Huiying1,He Daqian1ORCID

Affiliation:

1. Institute of Animal Husbandry and Veterinary Science Shanghai Academy of Agricultural Sciences Shanghai China

2. Chinese Academy of Inspection and Quarantine Beijing China

Abstract

AbstractThis study aimed to investigate the role of the LCORL gene in regulating the growth performance of Zhedong white (ZDW) geese, belonging to the swan geese (Anser cygnoides), and identify possible selective signatures in diverse goose breeds. Single nucleotide polymorphisms around LCORL were genotyped, and their associations with body‐size‐related (BSR) traits were estimated. The results showed that the genotyped loci upstream of LCORL were significantly related to the body weight and breast width of ZDW geese aged 10 weeks (p < 0.05). A genome scan comparing expected heterozygosity among different breeds identified a ~150 kb long genomic region with extremely low heterozygosity downstream of LCORL among swan geese. Further, significant associations of variants within the low heterozygosity region among ZDW geese with BSR traits, including body weight, body length and breast width (p < 0.05) were also detected. Overall, mutations adjacent to LCORL were related to the growth performance of swan geese, and the significant effects of variants in a low‐heterozygosity region on BSR traits provided valuable insights into the molecular mechanism of artificial selection reshaping body stature in swan geese.

Funder

Earmarked Fund for China Agriculture Research System

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics,Animal Science and Zoology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3