Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial

Author:

Ma Zeliang1,Liang Bin1,Wei Ran1,Liu Yunsong1,Bao Yongxing1ORCID,Yuan Meng1ORCID,Men Yu2,Wang Jianyang1,Deng Lei1ORCID,Zhai Yirui1,Bi Nan1,Wang Luhua1ORCID,Dai Jianrong1,Hui Zhouguang2ORCID

Affiliation:

1. Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

2. Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

Abstract

AbstractBackgroundRadiotherapy‐induced esophagitis (RE) diminishes the quality of life and interrupts treatment in patients with non‐small cell lung cancer (NSCLC) undergoing postoperative radiotherapy. Dosimetric models showed limited capability in predicting RE. We aimed to develop dosiomic models to predict RE.MethodsModels were trained with a real‐world cohort and validated with PORT‐C randomized controlled trial cohort. Patients with NSCLC undergoing resection followed by postoperative radiotherapy between 2004 and 2015 were enrolled. The endpoint was grade ≥2 RE. Esophageal three‐dimensional dose distribution features were extracted using handcrafted and convolutional neural network (CNN) methods, screened using an entropy‐based method, and selected using minimum redundancy and maximum relevance. Prediction models were built using logistic regression. The areas under the receiver operating characteristic curve (AUC) and precision‐recall curve were used to evaluate prediction model performance. A dosimetric model was built for comparison.ResultsA total of 190 and 103 patients were enrolled in the training and validation sets, respectively. Using handcrafted and CNN methods, 107 and 4096 features were derived, respectively. Three handcrafted, four CNN‐extracted and three dosimetric features were selected. AUCs of training and validation sets were 0.737 and 0.655 for the dosimetric features, 0.730 and 0.724 for handcrafted features, and 0.812 and 0.785 for CNN‐extracted features, respectively. Precision‐recall curves revealed that CNN‐extracted features outperformed dosimetric and handcrafted features.ConclusionsPrediction models may identify patients at high risk of developing RE. Dosiomic models outperformed the dosimetric‐feature model in predicting RE. CNN‐extracted features were more predictive but less interpretable than handcrafted features.

Publisher

Wiley

Subject

Pulmonary and Respiratory Medicine,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3