Intrinsic resistance to ROS1 inhibition in a patient with CD74‐ROS1 mediated by AXL overexpression

Author:

Peters Tara L.1,Chen Nan2ORCID,Tyler Logan C.3,Le Anh T.4,Dimou Anastasios5,Doebele Robert C.2

Affiliation:

1. Enliven Therapeutics, Inc. Boulder Colorado USA

2. Division of Medical Oncology University of Colorado Anschutz Medical Campus Aurora Colorado USA

3. OnKure Therapeutics, Inc. Boulder Colorado USA

4. Cell Technologies Shared Resources University of Colorado Anschutz Medical Campus Aurora Colorado USA

5. Division of Medical Oncology Mayo Clinic College of Medicine Rochester Minnesota USA

Abstract

AbstractBackgroundThe vast majority of patients with ROS1 positive non‐small cell lung cancer (NSCLC) derive clinical benefit from currently approved ROS1 therapies, including crizotinib and entrectinib. However, a small proportion of patients treated with ROS1 inhibitors fail to derive any clinical benefit and demonstrate rapid disease progression. The biological mechanisms underpinning intrinsic resistance remain poorly understood for oncogene‐driven cancers.MethodsWe generated a patient‐derived cell line, CUTO33, from a ROS1 therapy naive patient with CD74‐ROS1+ NSCLC, who ultimately did not respond to a ROS1 inhibitor. We evaluated a panel of ROS1+ patient‐derived NSCLC cell lines and used cell‐based assays to determine the mechanism of intrinsic resistance to ROS1 therapy.ResultsThe CUTO33 cell line expressed the CD74‐ROS1 gene fusion at the RNA and protein level. The ROS1 fusion protein was phosphorylated at baseline consistent with the known intrinsic activity of this oncogene. ROS1 phosphorylation could be inhibited using a wide array of ROS1 inhibitors, however these inhibitors did not block cell proliferation, confirming intrinsic resistance in this model and consistent with the patient's lack of response to a ROS1 inhibitor. CUTO33 expressed high levels of AXL, which has been associated with drug resistance. Combination of an AXL inhibitor or AXL knockdown with a ROS1 inhibitor partially reversed resistance.ConclusionsIn summary, we demonstrate that AXL overexpression is a mechanism of intrinsic resistance to ROS1 inhibitors.

Publisher

Wiley

Subject

Pulmonary and Respiratory Medicine,Oncology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Therapeutic advances of targeting receptor tyrosine kinases in cancer;Signal Transduction and Targeted Therapy;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3