Affiliation:
1. Department of Medicinal Chemistry and Molecular Pharmacology Purdue University College of Pharmacy West Lafayette Indiana USA
2. Department of Gastroenterology, Tongji Hospital Huazhong University of Science and Technology Wuhan China
3. College of Chemical Engineering Sichuan University of Science & Engineering Zigong China
Abstract
AbstractBackgroundIn response to therapeutic treatments, cancer cells can exhibit a variety of resistance phenotypes including neuroendocrine differentiation (NED). NED is a process by which cancer cells can transdifferentiate into neuroendocrine‐like cells in response to treatments, and is now widely accepted as a key mechanism of acquired therapy resistance. Recent clinical evidence has suggested that non‐small cell lung cancer (NSCLC) can also transform into small cell lung cancer (SCLC) in patients treated with EGFR inhibitors. However, whether chemotherapy induces NED to confer therapy resistance in NSCLC remains unknown.MethodsWe evaluated whether NSCLC cells can undergo NED in response to chemotherapeutic agents etoposide and cisplatin. By Knock‐down of PRMT5 or pharmacological inhibition of PRMT5 to identify its role in the NED process.ResultsWe observed that both etoposide and cisplatin can induce NED in multiple NSCLC cell lines. Mechanistically, we identified protein arginine methyltransferase 5 (PRMT5) as a critical mediator of chemotherapy‐induced NED. Significantly, the knock‐down of PRMT5 or pharmacological inhibition of PRMT5 suppressed the induction of NED and increased the sensitivity to chemotherapy.ConclusionTaken together, our results suggest that targeting PRMT5 may be explored as a chemosensitization approach by inhibiting chemotherapy‐induced NED.
Subject
Pulmonary and Respiratory Medicine,Oncology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献