Root growth of monocotyledons and dicotyledons is limited by different tissues

Author:

Petrova Anna1ORCID,Ageeva Marina2,Kozlova Liudmila13ORCID

Affiliation:

1. Laboratory of Plant Cell Growth Mechanisms Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS Lobachevsky Str., 2/31 420111 Kazan Russia

2. Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS Lobachevsky Str., 2/31 420111 Kazan Russia

3. Mechanics and Civil Engineering Laboratory University of Montpellier 860 Rue de St ‐ Priest 34090 Montpellier France

Abstract

SUMMARYPlant growth and morphogenesis are determined by the mechanical properties of its cell walls. Using atomic force microscopy, we have characterized the dynamics of cell wall elasticity in different tissues in developing roots of several plant species. The elongation growth zone of roots of all species studied was distinguished by a reduced modulus of elasticity of most cell walls compared to the meristem or late elongation zone. Within the individual developmental zones of roots, there were also significant differences in the elasticity of the cell walls of the different tissues, thus identifying the tissues that limit root growth in the different species. In cereals, this is mainly the inner cortex, whereas in dicotyledons this function is performed by the outer tissues—rhizodermis and cortex. These differences result in a different behaviour of the roots of these species during longitudinal dissection. Modelling of longitudinal root dissection using measured properties confirmed the difference shown. Thus, the morphogenesis of monocotyledonous and dicotyledonous roots relies on different tissues as growth limiting, which should be taken into account when analyzing the localization of associated molecular events. At the same time, no matrix polysaccharide was found whose immunolabelling in type I or type II cell walls would predict their mechanical properties. However, assessment of the degree of anisotropy of cortical microtubules showed a striking correlation with the elasticity of the corresponding cell walls in all species studied.

Funder

Russian Science Foundation

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3