The role of sympathetic innervation in neonatal muscle growth and neuromuscular contractures

Author:

Runkel Mason T.1,Tarabishi Albaraa2,Shay‐Winkler Kritton3,Emmert Marianne E.3,Goh Qingnian34ORCID,Cornwall Roger3456ORCID

Affiliation:

1. Department of Health Sciences Butler University Indianapolis IN USA

2. Department of Biochemistry University of Cincinnati OH USA

3. Division of Orthopaedic Surgery Cincinnati Children's Hospital Medical Center OH USA

4. Department of Orthopaedic Surgery University of Cincinnati College of Medicine OH USA

5. Department of Pediatrics University of Cincinnati College of Medicine OH USA

6. Division of Developmental Biology Cincinnati Children's Hospital Medical Center OH USA

Abstract

Neonatal brachial plexus injury (NBPI), a leading cause of pediatric upper limb paralysis, results in disabling and incurable muscle contractures that are driven by impaired longitudinal growth of denervated muscles. A rare form of NBPI, which maintains both afferent and sympathetic muscle innervation despite motor denervation, protects against contractures. We have previously ruled out a role for NRG/ErbB signaling, the predominant pathway governing antegrade afferent neuromuscular transmission, in modulating the formation of contractures. Our current study therefore investigated the contributions of sympathetic innervation of skeletal muscle in modulating NBPI‐induced contractures. Through chemical sympathectomy and pharmacologic modification with a β2‐adrenergic agonist, we discovered that sympathetic innervation alone is neither required nor sufficient to modulate contracture formation in neonatal mice. Despite this, sympathetic innervation plays an intriguing sex‐specific role in mediating neonatal muscle growth, as the cross‐sectional area (CSA) and volume of normally innervated male muscles were diminished by ablation of sympathetic neurons and increased by β‐adrenergic stimulation. Intriguingly, the robust alterations in CSA occurred with minimal changes to normal longitudinal muscle growth as determined by sarcomere length. Instead, β‐adrenergic stimulation exacerbated sarcomere overstretch in denervated male muscles, indicating potentially discrete regulation of muscle width and length. Future investigations into the mechanistic underpinnings of these distinct aspects of muscle growth are thus essential for improving clinical outcomes in patients affected by muscle disorders in which both length and width are affected.

Funder

Cincinnati Children's Hospital Medical Center

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3