Introduction of reversible cysteine ligation ability to the biliverdin‐binding cyanobacteriochrome photoreceptor

Author:

Suzuki Takahisa1ORCID,Yoshimura Masataka2,Hoshino Hiroki1,Fushimi Keiji3,Arai Munehito24ORCID,Narikawa Rei1ORCID

Affiliation:

1. Department of Biological Sciences, Graduate School of Science Tokyo Metropolitan University Japan

2. Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Japan

3. Graduate School of Science, Technology and Innovation Kobe University Kobe Japan

4. Department of Physics, Graduate School of Science The University of Tokyo Japan

Abstract

Cyanobacteriochrome (CBCR) photoreceptors are distantly related to the canonical red/far‐red reversible phytochrome photoreceptors. In the case of the CBCRs, only the GAF domain is required for chromophore incorporation and photoconversion. The GAF domains of CBCR are highly diversified into many lineages to sense various colors of light. These CBCR GAF domains are divided into two types: those possessing only the canonical Cys residue and those with both canonical and second Cys residues. The canonical Cys residue stably ligates to the chromophore in both cases. The second Cys residue mostly shows reversible adduct formation with the chromophore during photoconversion for spectral tuning. In this study, we focused on the CBCR GAF domain AnPixJg2_BV4, which possesses only the canonical Cys residue. AnPixJg2_BV4 covalently ligates to the biliverdin (BV) chromophore and shows far‐red/orange reversible photoconversion. Because BV is a mammalian intrinsic chromophore, BV‐binding molecules are advantageous for in vivo optogenetic and bioimaging tool development. To obtain a better developmental platform molecule, we performed site‐saturation random mutagenesis and serendipitously obtained a unique variant molecule that showed far‐red/blue reversible photoconversion, in which the Cys residue was introduced near the chromophore. This introduced Cys residue functioned as the second Cys residue that reversibly ligated with the chromophore. Because the position of the introduced Cys residue is distinct from the known second Cys residues, the variant molecule obtained in this study would expand our knowledge about the spectral tuning mechanism of CBCRs and contribute to tool development.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3