Mechanistic insights into iron–sulfur clusters and flavin oxidation of a novel xanthine oxidoreductase from Sulfobacillus acidophilusTPY

Author:

Pimviriyakul Panu1ORCID,Sucharitakul Jeerus23ORCID,Maenpuen Somchart4ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Science Kasetsart University Bangkok Thailand

2. Department of Biochemistry, Faculty of Dentistry Chulalongkorn University Bangkok Thailand

3. Skeletal Disorders Research Unit, Faculty of Dentistry Chulalongkorn University Bangkok Thailand

4. Department of Biochemistry, Faculty of Science Burapha University Chonburi Thailand

Abstract

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe‐2S, and FAD‐binding domains, respectively. XoC was found to be stable when co‐expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe‐2S clusters, whereas XoC bears a single‐bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2) during oxidative half‐reaction yielded no flavin semiquinones, implying ultrafast single‐electron transfer from 2Fe‐2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two‐step, single‐electron transfer cascade from 2Fe‐2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3