Effect of slope borders in reducing splash erosion during sediment transport by rain‐induced overland flow

Author:

Liu Lin12ORCID,Zhang Yi12,Li Zhongwu23ORCID,Xu Fei1,Zhang Qinghui1

Affiliation:

1. College of Geography and Environment Shandong Normal University Jinan 250014 China

2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Institute of Soil and Water Conservation, CAS and MWR Yangling 712100 China

3. School of Geographic Science Hunan Normal University Changsha 410081 China

Abstract

AbstractSplash erosion plays a vital role in the loss of eroded materials. Unlike those in slope central areas, laterally ejected splashed materials in slope border areas cannot be replenished easily because slope edges prevent splash erosion particles from entering the slope. Thus, splashed materials in slope border areas are less than those in slope central areas because of the lack of source areas for splash‐eroded materials. However, this phenomenon, called the slope border effect, has received minimal attention by researchers. The partially missing splash erosion induced by the slope border effect on sediment transport was investigated to understand the slope erosion mechanism further in this paper. A modified soil pan divided into four areas, namely, central erosion test area (length = 100 cm, width = 35 cm, depth = 45 cm), border erosion test area (length = 100 cm, width = 35 cm, depth = 45 cm), splash compensate border area (length = 110 cm, width = 30 cm, depth = 45 cm) and splash collection area (length = 100 cm, width = 2.5 cm, depth = 45 cm) was used to monitor diffusion and splash erosion under simulated rainfall. Results showed that the splash detachment rate increased with the increase in slope but initially decreased and then increased with the increase in rainfall intensity. The runoff rate and diffuse erosion rates for complete splash erosion (SE) treatments were higher than those without partial splash erosion (SEL). Under low rainfall erosive power and runoff transport capacity (e.g., 5° slope and 60 mm h−1), the transported clay in SE treatments was approximately 2% more than that in SEL treatments. This amount changed to more than 2% sand under high rainfall and runoff erosive power. However, the mass fraction accounted for by silt particles in the sediments of the SEL treatments was more than that in the SE treatments. Thus, the partially missing splash erosion can weaken the selective transport ability of runoff for sediments. The effect of missing partial splash erosion on diffuse erosion was enhanced with an increase in erosive power. The results of our paper will provide insights into the effect of the boundary effect zone of slope on soil erosion and its related mechanisms.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3