Moso bamboo expansion into a broadleaved forest alters the dominant soil organic carbon source

Author:

Shao Shuai12ORCID,He Hongbo3,Liang Chenfei12,Chen Junhui12,Qin Hua12,Wang Shanshan1,Wang Zhongqian1,Li Yi34,Jia Weina34,Zheng Xuli5,Chen Yong5,Fuhrmann Jeffry J.6,Xu Qiufang12,Zhang Xudong3

Affiliation:

1. The State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Lin'an, Hangzhou China

2. Zhejiang Provincial Collaborative Innovation Center for High‐Efficiency Utilization of Bamboo, Resources Zhejiang A&F University Lin'an, Hangzhou China

3. Chinese Academy of Sciences Institute of Applied Ecology Shenyang China

4. University of Chinese Academy of Sciences Beijing China

5. Lingfengsi Forest Farm of Anji County Anji China

6. Department of Plant and Soil Sciences University of Delaware Newark USA

Abstract

AbstractBoth microbes and plants contribute to soil organic carbon (SOC) formation and retention, but their roles in controlling SOC dynamics in forest soils under Moso bamboo (Phyllostachys edulis) expansion remain unclear. Here, amino sugars and lignin monomers were measured to represent microbial necromass and plant‐derived components, respectively. The observed decline in both amino sugars and lignin monomers during Moso bamboo expansion indicates a reduction in microbial necromass and recalcitrant plant contributions to SOC composition. This could be attributed to a limitation of microbial substrates and proliferation caused by the reduced litter inputs resulting from the expansion. The proportion of microbial necromass contributing to the SOC pool increased, but that of lignin monomers decreased, as SOC content decreased with Moso bamboo expansion. This suggests that the decrease of SOC during bamboo expansion was mainly due to the reduction of lignin, while the increased contribution of microbial‐derived carbon to SOC may serve to improve SOC stability. Our study sheds light on the altered SOC source inputs resulting from Moso bamboo expansion and emphasizes the need for sustainable forestry management practices that differentiate between microbial‐ and plant‐derived carbon pools.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3