A universal grain‐size distribution of soil with scaling invariance

Author:

Zhang Jun12ORCID,Li Yong2,Yang Taiqiang3,Liu Jingjing2,Guo Xiaojun2,Yao Yingjie4

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering; Department of Hydraulic Engineering Tsinghua University Beijing China

2. Key Laboratory of Mountain Hazards and Earth Surface Processes Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (CAS) Chengdu China

3. Power China Kunming Engineering Corporation Limited Kunming China

4. Department of Physics, Faculty of Science The University of Hong Kong Hong Kong China

Abstract

AbstractSoils are composed of wide‐ranged grains and grain size distribution (GSD) is the fundamental characteristic determining the physical and hydraulic properties. Previously we have proposed a GSD function for various soils. However, the remarkable discrepancy in the distribution occurs in some soils, which not only limits the applicability of the function but also raises doubt as to the possibility of a universal GSD function. In this study we modify the GSD function to a general form of P(D) ~ Dμexp(−D/Dc)n, which introduces a new exponent n for the grain size scale. It turns out that this modification has eliminated the discrepancies and universally applies to a great variety of soils from around the world (hence to be a universal GSD function, UGSD). The exponent n is proved to be a scaling factor of grain size in log‐scale and divides soils into three categories of n < 1 n > 1, and n = 1. Furthermore, soils of surface processes (e.g., erosion, tillage, desertification, landslides, avalanches, deposition, and sediment transportation) remain in the same category and preserve the UGSD function. Thus, the UGSD not only provides parameters μ and Dc as synthetic indices for soil properties (e.g., as indices for spatial heterogeneity or variables for pedotransfer functions), but also describes texture changes in dynamic processes. The UGSD function represents a ‘conservative law’ underlying soil genesis and processes, which fills the knowledge gaps related to the lack of universally applicable indices for soil properties, and thus has universal applications in soil classification, spatial variability, as well as dynamical processes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3