Studying the function of ecosystem in preventing aeolian dust emission in the dryland areas of China

Author:

Wang Xuesong1ORCID,Ferreira Carla Sofia Santos23

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown‐sand Control, Faculty of Geographical Science Beijing Normal University Beijing China

2. Department of Physical Geography and Bolin Centre for Climate Research Stockholm University Stockholm Sweden

3. Navarino Environmental Observatory Messinia Greece

Abstract

AbstractAeolian dust emissions can cause many environmental hazards, like accelerating land degradation and desertification, polluting air, harming human health, and so on. The dryland areas of China (DAC) are hot spots of aeolian dust emissions. To date, many efforts have been paid to researching dust emissions processes and effects, but research studies on ecosystems' function in preventing dust emissions are still very limited. In this study, we investigated the function of DAC ecosystems in preventing dust emissions, and the corresponding driving factors through integrated wind erosion modelling system (IWEMS) modelling. The main results indicate that: (1) from 2001 to 2020, the ecosystems of DAC prevented the emission of dust ~40,554 Tg, approximately 15 times as much as the total actual dust emission (~2776 Tg); (2) the function of DAC ecosystems in preventing dust emissions was relatively strong in spring and winter; (3) grassland ecosystems had the strongest function in preventing dust emissions among all the land cover types, avoiding the emission of dust ~20,857 Tg over 2001–2020; (4) dust emission prevention function provided by the DAC ecosystems benefits almost every region of China, which provides a theoretical basis for formulating ecological compensation policies; and (5) the changes in dust emissions were dominated by wind speed in most areas of DAC.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3