Chloroform‐labile trace elements in soil via fumigation‐extraction: Steps towards the soil microbial ionome beyond C:N:P

Author:

Schwalb S. A.1ORCID,Khan K. S.23,Hemkemeyer M.1ORCID,Heinze S.4,Oskonbaeva Z.1ORCID,Joergensen R. G.2,Wichern F.1ORCID

Affiliation:

1. Soil Science and Plant Nutrition, Faculty of Life Sciences Rhine‐Waal University of Applied Sciences Kleve Germany

2. Soil Biology and Plant Nutrition, Faculty of Organic Agriculture University of Kassel Witzenhausen Germany

3. Institute of Soil Science PMAS Arid Agriculture University Rawalpindi Pakistan

4. Soil Science and Soil Ecology Ruhr‐University Bochum Bochum Germany

Abstract

AbstractSecondary and trace elements may be limiting soil microbial functioning, albeit microbial demand and content remain largely unknown and methods for their in situ detection are limited. Thus, the objective of the present study was to take the first step towards the method development for the assessment of the soil microbial ionome, that is, the elemental composition of soil microbial communities. Chloroform (CHCl3) fumigation extraction was used for the detection of microbial CHCl3‐labile secondary and trace element concentrations in soils. The suitability of two extractants (NH4NO3, CaCl2) for the quantification of CHCl3‐labile concentrations of phosphorus, sulphur, potassium, sodium, and magnesium, as well as selenium, iron, zinc, manganese, copper, cobalt, nickel, molybdenum, vanadium, boron, silicon, barium, arsenic, and cadmium, were tested in six agricultural soils. Additionally, three soil to extractant ratios (1:5, 1:10, and 1:20) and two extraction durations, 1 or 2 h, were tested in a subset of two soils. Out of the two extractants tested, 0.01 M CaCl2was found to be the best‐suited extractant. For CaCl2, a soil‐to‐extractant ratio of 1:20 with an extraction time of 1 h was best for the majority of elements in the two soils tested. In a limited number of agricultural soils, we were able to show that CHCl3fumigation extraction can successfully be applied to the elements phosphorus, sulphur, potassium, sodium, magnesium, zinc, manganese, copper, nickel, vanadium, boron, silicon, and barium to yield a CHCl3‐labile element fraction. Conversion values to microbial biomass, accounting for elements contained in the cell envelope components, which are mostly not extractable, and to account for adsorption to soil colloids during extraction are yet to be determined in a larger variety of soils. To overcome some of the limitations of the fumigation extraction approach for secondary and trace elements, a pre‐extraction step may provide a suitable solution.

Publisher

Wiley

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3