DNA barcoding resolves quantitative multi‐trophic interaction networks and reveals pest species in trap nests

Author:

Fornoff Felix1ORCID,Halla Wenzel2,Geiger Sarah2,Klein Alexandra‐Maria1,Sann Manuela23

Affiliation:

1. Department of Nature Conservation and Landscape Ecology Albert‐Ludwigs‐University Freiburg Freiburg Germany

2. Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology) Albert‐Ludwigs‐University Freiburg Freiburg Germany

3. Department of Chemical Ecology, Institute of Biology University of Hohenheim Stuttgart Germany

Abstract

Abstract Insects, as one of the most species‐rich taxa with enormous taxonomic, behavioural and functional diversity, are in decline. Bees and wasps are especially crucial for ecosystems as pollinators or to control populations of other insects. To understand population drivers, comprehensive knowledge about top‐down and bottom‐up interactions, including all interaction partners, is needed. Nests of trap‐nesting bees and wasps include multi‐trophic interactions between bees, wasps, their food resources and natural enemies, simultaneously, however, up to today, all trophic interactions are not yet included in trap nest research because of challenges to identify the food used by nesting bees and wasps. Here, we reconstructed quantitative three‐ and four‐trophic interaction networks of species in three apoid wasp families using DNA barcoding. The obtained tripartite and quadripartite networks encompassed natural enemy‐wasp‐spider and natural enemy‐wasp‐herbivore‐plant interactions. Moreover, we identified so far undescribed Hymenoptera‐prey interactions, including prey species known as agricultural and forest pests. More extensive research on bee and wasp multitrophic interaction networks will provide valuable insights to better understand responses to environmental and biodiversity change, to investigate ecological theory and to reveal so far unknown feeding links.

Funder

Robert Bosch Stiftung

Publisher

Wiley

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3