Genetic diversity and differentiation of isolated rear‐edge populations of a cold adapted butterfly, Erebia aethiops, in Britain

Author:

Gunson Lucy R.1,Roberts Michael R.1,Menéndez Rosa1

Affiliation:

1. Lancaster Environment Centre Lancaster University Lancaster UK

Abstract

Abstract Rear‐edge populations of cold‐adapted species are highly vulnerable to climate change, their adaptations maybe critical for the persistence of the species as a whole. Using AFLP, we investigated population genetic diversity and differentiation of Scotch argus (Erebia aethiops), a cold‐adapted butterfly, comparing isolated rear‐edge and core populations in Britain, a relict part of the species range. We also examined genetic differences among sub‐populations and dispersal distances conducting a mark‐release‐recapture (MRR) study at the rear‐edge. Genetic diversity was higher in the isolated rear‐edge populations than populations at the core of the range and declined with latitude, supporting the idea that current differences in genetic diversity levels across Britain are likely the result of historical range changes after the last glaciation. Populations were genetically differentiated among regions, meaning that losing the isolated rear‐edge populations may prove detrimental for the survival of the species in Britain, as these populations are likely to be better adapted to warmer climates. We found that the largest population at the rear‐edge is genetically robust, with gene flow among patches, likely maintained by males as indicated by the higher dispersal distances recorded for males in the MRR, but colonisation of empty patches is constrained by females' low mobility. Our results highlight that isolated populations at the rear‐edge of cold‐adapted species should be considered of high conservation priority, as they hold higher levels of genetic diversity and differentiation which may prove to be key for the survival of these species under global warming.

Publisher

Wiley

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3