Enhanced Photocatalytic Degradation of Indoor Low Concentration Gaseous Formaldehyde by Asymmetric Silveriodate Composited with 2D or 3D Bismuth Oxybromide

Author:

Lin Guo Liang1ORCID,Liu Min Yi23,Lin Ao Xiang1,Lu Dong Wang1,Wu Shi Chang4,Chen Yi Lan2,Song Xu Chun3

Affiliation:

1. Fujian Provincial Key Laboratory of Advanced Technology and Information in Civil Engineering Fuzhou China

2. College of Ecological Environment and Urban Construction Fujian University of Technology Fuzhou China

3. Department of Chemistry Fujian Normal University Fuzhou China

4. Zhongda (Fujian) Engineering Construction Group Co. Ltd Xiamen China

Abstract

AbstractFormaldehyde is one of the most hazardous and typical indoor VOCs air pollutants. Asymmetric AgIO3 was respectively composited with 3D hierarchically structured BiOBr and 2D BiOBr nanosheets to photodegrade gas‐phase formaldehyde. Ag/AgIO3/BiOBr(CMC) demonstrated better photocatalytic performance than Ag/AgIO3/BiOBr owning to the role of biomass solvent sodium carboxymethyl cellulose in increasing the specific surface area, reducing the band gap and changing the dominant facets. Moreover, Ag nanoparticles coming from the reduction in AgIO3 were confirmed by XRD, SEM and XPS. The surface plasma resonance effect of Ag NPs improved the efficiency of the light quantum. Besides, different exposed facets of {010} in BiOBr(CMC) and {001} in BiOBr resulted in distinct oxygen vacancy structures. could be generated via a two‐electron transfer pathway on the {010} dominant facets surface in AABR‐CMC, leading to the change in photolysis pathway and facilitating more ·OH produced by AABR‐CMC. Compared with pure AgIO3 and BiOBr or BiOBr(CMC), the photocatalytic efficiency of the composites was improved significantly. Optimal photodegradation efficiency for HCHO was achieved for AABR‐75 and AABR‐CMC50.

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3