Affiliation:
1. Department of Spine Surgery Xi'an Honghui Hospital, School of Medicine, Xi'an Jiaotong University Xi'an China
2. Department of Critical Care Medicine Xi'an Honghui Hospital, School of Medicine, Xi'an Jiao Tong University Xi'an China
3. Department of Emergency Xi'an Honghui Hospital, School of Medicine, Xi'an Jiaotong University Xi'an China
Abstract
AbstractMetastasis‐associated protein 1 (MTA1), belonging to metastasis‐associated proteins (MTA) family, which are integral parts of nucleosome remodelling and histone deacetylation (NuRD) complexes. However, the effect of MTA1 on osteoclastogenesis is unknown. Currently, the regulation of MTA1 in osteoclastogenesis was reported for the first time. MTA1 knockout cells (KO) were established by CRISPR/Cas9 genome editing. RAW264.7 cells with WT and KO group were stimulated independently by RANKL to differentiate into mature osteoclasts. Further, western blotting and quantitative qRT‐PCR were used to explore the effect of MTA1 on the expression of osteoclast‐associated genes (including CTSK, MMP9, c‐Fos and NFATc1) during osteoclastogenesis. Moreover, the effects of MTA1 on the expression of reactive oxygen species (ROS) in osteoclastogenesis was determined by 2′, 7′ ‐dichlorodihydrofluorescein diacetate (DCFH‐DA) staining. Nuclear translocation of Nrf2 was assessed by immunofluorescence staining and western blotting. Our results indicated that the MTA1 deletion group could differentiate into osteoclasts with larger volume and more TRAP positive. In addition, compared with WT group, KO group cells generated more actin rings. Mechanistically, the loss of MTA1 increased the expression of osteoclast‐specific markers, including c‐Fos, NFATc1, CTSK and MMP‐9. Furthermore, the results of qRT‐PCR and western blotting showed that MTA1 deficiency reduced basal Nrf2 expression and inhibited Nrf2‐mediated expression of related antioxidant enzymes. Immunofluorescence staining demonstrated that MTA1 deficiency inhibited Nrf2 nuclear translocation. Taken together, the above increased basal and RANKL‐induced intracellular ROS levels, leading to enhanced osteoclast formation.
Funder
National Natural Science Foundation of China
Subject
Cell Biology,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献