Dyadic cooperation with human and artificial agents: Event‐related potentials trace dynamic role taking during an interactive game

Author:

Flösch Karl‐Philipp12ORCID,Flaisch Tobias1ORCID,Imhof Martin A.12ORCID,Schupp Harald T.12ORCID

Affiliation:

1. Department of Psychology University of Konstanz Konstanz Germany

2. Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany

Abstract

AbstractHumans are highly co‐operative and thus cognitively, affectively, and motivationally tuned to pursue shared goals. Yet, cooperative tasks typically require people to constantly take and switch individual roles. Task relevance is dictated by these roles and thereby dynamically changing. Here, we designed a dyadic game to test whether the family of P3 components can trace this dynamic allocation of task relevance. We demonstrate that late positive event‐related potential (ERP) modulations not only reflect predictable asymmetries between receiving and sending information but also differentiate whether the receiver's role is related to correct decision making or action monitoring. Furthermore, similar results were observed when playing the game with a computer, suggesting that experimental games may motivate humans to similarly cooperate with an artificial agent. Overall, late positive ERP waves provide a real‐time measure of how role taking dynamically shapes the meaning and relevance of stimuli within collaborative contexts. Our results, therefore, shed light on how the processes of mutual coordination unfold during dyadic cooperation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,Biological Psychiatry,Cognitive Neuroscience,Developmental Neuroscience,Endocrine and Autonomic Systems,Neurology,Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3