Triploid Pacific oysters exhibit stress response dysregulation and elevated mortality following heatwaves

Author:

George Matthew N.12ORCID,Cattau Olivia1ORCID,Middleton Mollie A.23,Lawson Delaney1,Vadopalas Brent1ORCID,Gavery Mackenzie2ORCID,Roberts Steven B.1ORCID

Affiliation:

1. School of Aquatic & Fishery Sciences University of Washington Seattle Washington USA

2. Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration Seattle Washington USA

3. Saltwater Inc. Anchorage Alaska USA

Abstract

AbstractPolyploidy has been suggested to negatively impact environmental stress tolerance, resulting in increased susceptibility to extreme climate events. In this study, we compared the genomic and physiological response of diploid (2n) and triploid (3n) Pacific oysters (Crassostrea gigas) to conditions present during an atmospheric heatwave that impacted the Pacific Northwestern region of the United States in the summer of 2021. Climate stressors were applied either singly (single stressor; elevated seawater temperature, 30°C) or in succession (multiple stressor; elevated seawater temperature followed by aerial emersion at 44°C), replicating conditions present within the intertidal over a tidal cycle during the event. Oyster mortality rate was elevated within stress treatments with respect to the control and was significantly higher in triploids than diploids following multiple stress exposure (36.4% vs. 14.8%). Triploids within the multiple stressor treatment exhibited signs of energetic limitation, including metabolic depression, a significant reduction in ctenidium Na+/K+ ATPase activity, and the dysregulated expression of genes associated with stress response, innate immunity, glucose metabolism, and mitochondrial function. Functional enrichment analysis of ploidy‐specific gene sets identified that biological processes associated with metabolism, stress tolerance, and immune function were overrepresented within triploids across stress treatments. Our results suggest that triploidy impacts the transcriptional regulation of key processes that underly the stress response of Pacific oysters, resulting in downstream shifts in physiological tolerance limits that may increase susceptibility to extreme climate events that present multiple environmental stressors. The impact of chromosome set manipulation on the climate resilience of marine organisms has important implications for domestic food security within future climate scenarios, especially as triploidy induction becomes an increasingly popular tool to elicit reproductive control across a wide range of species used within marine aquaculture.

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Reference126 articles.

1. Performance of Tripfoid Pacific Oysters, Crassostrea gigas: Gametogenesis

2. Consumers and experts alike prefer the taste of sterile triploid over gravid diploid Pacific oysters (Crassostrea gigas, Thunberg, 1793);Allen S. K.;Journal of Shellfish Research,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3