Author:
JIANG JINGWEN,KELLY BRYAN,XIU DACHENG
Abstract
ABSTRACTWe reconsider trend‐based predictability by employing flexible learning methods to identify price patterns that are highly predictive of returns, as opposed to testing predefined patterns like momentum or reversal. Our predictor data are stock‐level price charts, allowing us to extract the most predictive price patterns using machine learning image analysis techniques. These patterns differ significantly from commonly analyzed trend signals, yield more accurate return predictions, enable more profitable investment strategies, and demonstrate robustness across specifications. Remarkably, they exhibit context independence, as short‐term patterns perform well on longer time scales, and patterns learned from U.S. stocks prove effective in international markets.
Subject
Economics and Econometrics,Finance,Accounting
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献