Proline‐rich protein PRPL1 enhances Panax notoginseng defence against Fusarium solani by regulating reactive oxygen species balance and strengthening the cell wall barrier

Author:

Su Linlin12,Li Wenyun12,Chen Xiaohua12,Wang Pengcheng3,Liu Diqiu12ORCID

Affiliation:

1. Faculty of Life Science and Technology Kunming University of Science and Technology Kunming Yunnan China

2. Yunnan Provincial Key Laboratory of Panax notoginseng Kunming Yunnan China

3. State Key Laboratory for Conservation and Utilization of Bio‐resources in Yunnan Yunnan University Kunming China

Abstract

AbstractThe root rot mainly caused by Fusarium solani is a bottleneck in the cultivation of Panax notoginseng. In this study, we reported a gene encoding a plant cell wall structural protein, P. notoginseng proline‐rich protein (PnPRPL1), whose transcription was upregulated by F. solani and induced by some hormone signals. The PnPRPL1 recombinant protein significantly inhibited the growth and conidial germination of the root rot pathogens. Downregulation of PnPRPL1 by RNA interference (RNAi) in P. notoginseng leaves increased the susceptibility to F. solani, whereas overexpression of PnPRPL1 in tobacco (Nicotiana tabacum) enhanced the resistance to F. solani. Compared with wild‐type tobacco, the PnPRPL1‐overexpressing transgenic tobacco had higher reactive oxygen species (ROS)‐scavenging enzyme activities, lower ROS levels, and more lignin and callose deposition. The opposite results were obtained for the P. notoginseng expressing PnPRPL1 RNAi fragments. Furthermore, the PnPRPL1 promoter transcription activity was induced by several plant hormones and multiple stress stimuli. In addition, the transcription factor PnWRKY27 activated the expression of PnPRPL1 by directly binding to the promoter region. Thus, PnPRPL1, which is positively regulated by a WRKY transcription factor, encodes an antimicrobial protein that also mediates ROS homoeostasis and callose/lignin deposition during the response to F. solani infection.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3