Mullite (3Al2O3·2SiO2)–Aluminum Phosphate (AlPO4), Oxide, Fibrous Monolithic Composites

Author:

Kim Dong‐Kyu,Kriven Waltraud M.

Abstract

Mullite–AlPO4 fibrous monolithic composites were fabricated by a co‐extrusion technique using ethylene vinyl acetate (EVA) as a binder. Processing routes such as mixing formulation, extrusion sequence, binder removal cycle, pressing, and sintering procedures are described. An effort to make tougher composites was conducted by modifying the microstructures of the composites. Different kinds of monolithic composites were fabricated by changing the number of filaments, and the composition and thickness of interphase layers, and their microstructural and mechanical properties were characterized. To make the interphase more porous and to facilitate debonding and fiber pullout in the composite, graphite was added as a fugitive “space filler” into the interphase material and then removed. A fibrous monolithic composite with a sintered interphase thickness of 5–10 μm and an interphase composition of 50 vol% graphite and 50 vol% AlPO4 had a three‐point bend strength and a work of fracture of 129 ± 2 MPa and 0.86 ± 0.05 kJ/m2, respectively. This corresponded to 42% of the strength but 162% of the work of fracture when compared with the values for a single‐phase mullite. Two‐layer, mixed 50% two‐layer:50% three‐layer, and three‐layer fibrous monoliths were fabricated and their microstructural and mechanical properties were studied. The difference in the sintering behaviors of the two‐layer and three‐layer composites is described.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3