Melatonin rescues the mitochondrial function of bone marrow‐derived mesenchymal stem cells and improves the repair of osteoporotic bone defect in ovariectomized rats

Author:

Gu Chao123,Zhou Quan12,Hu Xiayu12,Ge Xiaoyang12,Hou Mingzhuang12,Wang Wenhao12,Liu Hao12,Shi Qin12,Xu Yong12,Zhu Xuesong1,Yang Huilin12,Chen Xi4,Liu Tao1,He Fan12

Affiliation:

1. Department of Orthopaedics The First Affiliated Hospital of Soochow University Suzhou China

2. Orthopaedic Institute, Suzhou Medical College of Soochow University Soochow University Suzhou China

3. Department of Orthopaedics Suzhou Dushu Lake Hospital Suzhou China

4. Department of Pathology The Third Affiliated Hospital of Soochow University Changzhou China

Abstract

AbstractOsteoporotic bone defects, a severe complication of osteoporosis, are distinguished by a delayed bone healing process and poor repair quality. While bone marrow‐derived mesenchymal stem cells (BMMSCs) are the primary origin of bone‐forming osteoblasts, their mitochondrial function is impaired, leading to inadequate bone regeneration in osteoporotic patients. Melatonin is well‐known for its antioxidant properties and regulation on bone metabolism. The present study postulated that melatonin has the potential to enhance the repair of osteoporotic bone defects by restoring the mitochondrial function of BMMSCs. In vitro administration of melatonin at varying concentrations (0.01, 1, and 100 μM) demonstrated a significant dose‐dependent improvement in the mitochondrial function of BMMSCs obtained from ovariectomized rats (OVX‐BMMSCs), as indicated by an elevation in mitochondrial membrane potential, adenosine triphosphate synthesis and expression of mitochondrial respiratory chain factors. Melatonin reduced the level of mitochondrial superoxide by activating the silent information regulator type 1 (SIRT1) and its downstream antioxidant enzymes, particularly superoxide dismutase 2 (SOD2). The protective effects of melatonin were found to be nullified upon silencing of Sirt1 or Sod2, underscoring the crucial role of the SIRT1‐SOD2 axis in the melatonin‐induced enhancement of mitochondrial energy metabolism in OVX‐BMMSCs. To achieve a sustained and localized release of melatonin, silk fibroin scaffolds loaded with melatonin (SF@MT) were fabricated. The study involved the surgical creation of bilateral femur defects in OVX rats, followed by the implantation of SF@MT scaffolds. The results indicated that the application of melatonin partially restored the mitochondrial energy metabolism and osteogenic differentiation of OVX‐BMMSCs by reinstating mitochondrial redox homeostasis. These findings suggest that the localized administration of melatonin through bone implants holds potential as a therapeutic approach for addressing osteoporotic bone defects.

Publisher

Wiley

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3