GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism

Author:

Xiao Shenghua12,Ming Yuqing13,Hu Qin12,Ye Zhengxiu1,Si Huan1,Liu Shiming13,Zhang Xiaojun13,Wang Weiran4,Yu Yu5,Kong Jie4,Klosterman Steven J.6,Lindsey Keith7,Zhang Xianlong13ORCID,Aierxi Alifu4,Zhu Longfu13ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan Hubei China

2. State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of Agriculture Guangxi University Nanning China

3. Hubei Hongshan Laboratory Huazhong Agricultural University Wuhan Hubei China

4. Institute of Economic Crops Xinjiang Academy of Agricultural Sciences Xinjiang China

5. Xinjiang Academy of Agricultural & Reclamation Sciences Shihezi China

6. United States Department of Agriculture Agricultural Research Service Salinas CA USA

7. Department of Biosciences Durham University Durham UK

Abstract

SummaryDespite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease‐resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock‐down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome‐wide chromatin immunoprecipitation and high‐throughput sequencing (ChIP‐seq), in combination with RNA sequencing (RNA‐seq) analyses, revealed that 43.1% of GhWRKY41‐binding genes were up‐regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance‐related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY‐WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3