Splint‐free line drawing model: An innovative method for excisional wound models

Author:

Yang Yi1ORCID,Xie Wenjun234,Li Shiyi1,Sun Xuer1,Yu Boya1,Fu Huijuan1,Chen Minliang1

Affiliation:

1. Senior Department of Burns and Plastic Surgery The Fourth Medical Center of Chinese PLA General Hospital Beijing China

2. Department of Orthopaedics, Zhongda Hospital Southeast University Nanjing China

3. Trauma Center, Zhongda Hospital Southeast University Nanjing China

4. Orthopaedic Trauma Institute (OTI), Southeast University Nanjing China

Abstract

AbstractThe physiological phenomenon of wound contraction in mice cannot completely imitate the process of human skin regeneration, which is primarily attributed to reepithelialisation. As such, excisional wound models in mice are considered to be imperfect comparisons. This study aimed to enhance the correlation of mouse excisional wound models with that of humans, and to offer more practical and accurate ways to record and measure wound areas. We present evidence that simple excisional wounds produce a robust and stable wound model by comparing splint‐free and splint groups. We monitored reepithelialisation and contraction in the C57BL/6J mouse excision wound model at different time points and prove that excisional wounds heal by both contraction and reepithelialisation. Some parameters were measured and a formula was used to calculate the area of wound reepithelialisation and contraction. In our results, reepithelialisation accounted for 46% of the wound closure of full‐thickness excisional wounds. In conclusion, excisional wound models can be used as wound‐healing models and a straightforward formula may be used to determine the process of reepithelialisation over a wound bed created by a simple excisional rodent wound model.

Publisher

Wiley

Subject

Dermatology,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3