Failure risk management: adaptive performance control and mission abort decisions

Author:

Qiu Qingan1,Li Rong2,Zhao Xian23

Affiliation:

1. School of Management Beijing Institute of Technology Beijing China

2. School of Economics Beijing Institute of Technology Beijing China

3. Digital Economy and Policy Intelligentization Key Laboratory of Ministry of Industry and Information Technology Beijing China

Abstract

AbstractThe failure behavior of safety‐critical systems typically depends on the system performance level, which offers opportunities to control system failure risk through dynamic performance adjustment. Moreover, mission abort serves as an intuitive way to mitigate safety hazards during mission execution. Our study focuses on systems that execute successive missions with random durations. To balance mission completion probability and system failure risk, we examine two decision problems: when to abort missions and how to select the performance level prior to mission abort. Our objective is to maximize the expected revenue through dynamic performance control and mission abort (PCMA) decisions. We consider condition‐based PCMA decisions and formulate the joint optimization problem into a Markov decision process. We establish the monotonicity and concavity of the value function. Based on this insight, we show that optimizing the mission abort policy requires a series of control limits. In addition, we provide conditions under which the performance control policies are monotone. For comparative purposes, we analytically evaluate the performances of some heuristic policies. Finally, we present a case study involving unmanned aerial vehicles executing power line inspections. The results indicate the superiority of our proposed risk control policies in enhancing operational performance for safety‐critical systems. Dynamic performance adjustment and mission abort decisions provide opportunities to reduce the failure risk and increase operational rewards of safety‐critical systems.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3