LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis viamiR‐16‐5p/ACSL4 axis to alleviate diabetic nephropathy

Author:

Fang Xiangdong1,Song Jianling1,Chen Yanxia1,Zhu Shuying1,Tu Weiping1,Ke Ben1ORCID,Wu Lidong2

Affiliation:

1. Department of Nephrology The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi Province China

2. Emergency Department The Second Affiliated Hospital of Nanchang University Nanchang Jiangxi Province China

Abstract

ABSTRACTBackgroundHyperglycemia accelerates the development of diabetic nephropathy (DN) by inducing renal tubular injury. Nevertheless, the mechanism has not been elaborated fully. Here, the pathogenesis of DN was investigated to seek novel treatment strategies.MethodsA model of diabetic nephropathy was established in vivo, the levels of blood glucose, urine albumin creatinine ratio (ACR), creatinine, blood urea nitrogen (BUN), malondialdehyde (MDA), glutathione (GSH), and iron were measured. The expression levels were detected by qRT‐PCR and Western blotting. H&E, Masson, and PAS staining were used to assess kidney tissue injury. The mitochondria morphology was observed by transmission electron microscopy (TEM). The molecular interaction was analyzed using a dual luciferase reporter assay.ResultsSNHG1 and ACSL4 were increased in kidney tissues of DN mice, but miR‐16‐5p was decreased. Ferrostatin‐1 treatment or SNHG1 knockdown inhibited ferroptosis in high glucose (HG)‐treated HK‐2 cells and in db/db mice. Subsequently, miR‐16‐5p was confirmed to be a target for SNHG1, and directly targeted to ACSL4. Overexpression of ACSL4 greatly reversed the protective roles of SNHG1 knockdown in HG‐induced ferroptosis of HK‐2 cells.ConclusionsSNHG1 knockdown inhibited ferroptosis via the miR‐16‐5p/ACSL4 axis to alleviate diabetic nephropathy, which provided some new insights for the novel treatment of diabetic nephropathy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3