Mechanisms analysis for Formononetin counteracted‐Osimertinib resistance in non‐small cell lung cancer cells: From the insight into the gene transcriptional level

Author:

Yin Runyang1,Gao Jing2,Liu Yang3

Affiliation:

1. Department of Anesthesiology The Affiliated Hospital of Inner Mongolia Medical University Hohhot China

2. First Clinical Medical College The Affiliated Hospital of Inner Mongolia Medical University Hohhot China

3. Department of Clinical Laboratory The Affiliated Hospital of Inner Mongolia Medical University Hohhot China

Abstract

AbstractFormononetin is one of the main isoflavone components, which has strong anti‐cancer effects in non‐small cell lung cancer (NSCLC). However, the potentials and the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC are unclear. In this study, Formononetin‐induced cell apoptosis, cell proliferation, and clonal formation were detected in Osimertinib‐resistant NSCLC cells (H1975_OR). RNA sequencing analysis was conducted to study the gene expression profiles of Formononetin‐induced H1975_OR cells. The results indicated that Formononetin could significantly induce cell apoptosis, whereas dramatically inhibited cell proliferation and clonal formation on H1975_OR cells. Furthermore, a total of 4309 differentially expressed genes (DEGs) between Formononetin‐treated and nontreated H1975_OR cells were had been detected. Gene Ontology (GO) annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the Gene Set Enrichment Analysis (GSEA) showed that Formononetin affected the expression of genes involving in anatomical structure morphogenesis, anatomical structure development, and multicellular organism development via regulating inflammation‐ and metabolism‐related signaling pathways. Taken together, our study preliminarily revealed the mechanisms of Formononetin to counteract the Osimertinib resistance in NSCLC cells from the transcriptional level and provided a potential treatment method for Osimertinib‐resistant NSCLC patients.

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3