Mechanism analysis of Buyang Huanwu decoction in treating atherosclerosis based on network pharmacology and in vitro experiments

Author:

Wang Jing1,Li Jiajun1,Hu Min1

Affiliation:

1. Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China

Abstract

AbstractAtherosclerosis (AS) is one of the main risk factors of ischemic cardiovascular and cerebrovascular diseases. Buyang Huanwu decoction (BYHWT) is a classic Chinese medicine prescription that is used for treating AS. However, the underlying pharmacological mechanism remains unclear. This study aims to clarify the molecular mechanism of BYHWT in treatment of AS through network pharmacology and in vitro experiments. Molecular structure information and targets of core components of BYHWT were obtained from PubChem and UniProtKB databases. Genes involved in AS were obtained from DisGeNet, GeneCards and OMIM databases. The core targets of BYHWT in AS treatment were identified by protein–protein interaction (PPI) network analysis with STRING platform, and analyzed by gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway enrichment analysis. Molecular docking was used to verify the binding affinity between the core targets and the bioactive ingredients. HUVEC viability, inflammatory response and mRNA expression levels of core target genes were evaluated by cell counting kit 8 assay, enzyme‐linked immunosorbent assay (ELISA) and qRT‐PCR. A total of 60 candidate compounds and 325 predicted target genes were screened. PPI network analysis suggested that TP53, SRC, STAT3, and AKT1 may be the core targets. BYHWT in AS treatment was associated with 46 signaling pathways. GA120, baicalein, and 3,9‐di‐o‐methylnissolin had good binding affinity with core target proteins. Baicalein treatment could significantly promoted the viability and repress the inflammatory response of HUVEC cells stimulated by ox‐LDL. In addition, Baicalein can regulate the expression of core targets including AKT1, MAPK1, PIK3CA, JUN, TP53, SRC, EGFR, and ESR1. In conclusion, BYHWT and its main bioactive component baicalein, inhibit inflammatory response and modulate multiple downstream genes of endothelial cells, and show good potential to block the progression of AS and cardiovascular/cerebrovascular diseases.

Funder

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3