Well‐defined synthesis of crystalline MnO, Mn2O3, and Mn3O4 phases by anodic electrodeposition and calcination

Author:

Cestaro Roberto1ORCID,Rheingans Bastian1,Schweizer Peter2,Müller Arnold3,Vockenhuber Christof3,Cancellieri Claudia1,Jeurgens Lars P. H.1,Schmutz Patrik1

Affiliation:

1. Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Joining Technologies and Corrosion Dübendorf Switzerland

2. Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Thun Switzerland

3. Laboratory of Ion Beam Physics ETH Zurich Zurich Switzerland

Abstract

AbstractTailoring of the stoichiometry, crystallinity, and microstructure of manganese oxides (MnOx) is of utmost importance for technological applications in the field of catalysis, energy storage, and water splitting. In this work, α‐Mn2O3, α‐Mn3O4, and MnO thin films with defined stoichiometric compositions and crystal structures were prepared by calcination of an anodically electrodeposited Mn‐oxyhydroxide precursor film in different gas atmospheres (air, inert, or reducing gas). The crystal structure and composition of the precursor and product films were determined by combining X‐ray diffraction, transmission electron microscopy, Raman spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection analysis. The anodically electrodeposited precursor film consists of nanocrystals of α‐Mn3O4 dispersed in an amorphous MnOOH matrix phase, and can be fully transformed into either crystalline α‐Mn2O3, α‐Mn3O4, or MnO upon calcination in an oxidizing, inert or reducing atmosphere, respectively. In situ high‐temperature X‐ray diffraction was applied to derive the phase transformation kinetics, resulting in a corresponding activation energy which decreases in the order α‐Mn2O3 (268 kJ/mole) > MnO (102 kJ/mole) > α‐Mn3O4 (60 kJ/mole). The disclosed synthesis routes for the preparation of single‐phase MnOx films with a defined crystal structure and stoichiometry can be exploited for a wealth of applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3