Calcium nitrate effectively mitigates alkali–silica reaction by surface passivation of reactive aggregates

Author:

Xiao Rui1,Prentice Dale1,Collin Marie1,Balonis Magdalena12,La Plante Erika3,Torabzadegan Mehrdad4,Gadt Torben5ORCID,Sant Gaurav1267

Affiliation:

1. Institute for Carbon Management (ICM) University of California Los Angeles California USA

2. Department of Materials Science and Engineering University of California Los Angeles California USA

3. Department of Materials Science and Engineering University of California Davis California USA

4. Yara ASA Oslo Norway

5. Department of Chemistry Technical University of Munich Munich Germany

6. Department of Civil and Environmental Engineering University of California Los Angeles California USA

7. California NanoSystems Institute (CNSI) University of California Los Angeles California USA

Abstract

AbstractCalcium nitrate (CN: Ca(NO3)2) has been shown to mitigate alkali–silica reaction (ASR) in concrete. Such ASR mitigation has been suggested to be on account of precipitate (i.e., barrier or passivation layer) formation‐induced dissolution inhibition of reactive/dissolving aggregate surfaces. Herein, we examine the ability of CN to mitigate ASR across two cements (Type I/II and Portland Limestone Cement), for aggregates of varying reactivity, and across different types and dosages of SCMs (supplementary cementitious materials, i.e., amorphous steel slag and Class C and Class F fly ashes). Based on expansion measurements carried out as per ASTM C1260/C1567, it is observed that CN, as a function of dosage, substantively mitigates ASR in mortar formulations across aggregate types. Careful microstructural examinations, dissolution studies, and thermodynamic calculations indicate that CN induces the formation of C–S–H, portlandite (Ca(OH)2), and calcite (CaCO3) precipitate mixtures, which form on aggregate surfaces at the expense of typical ASR gels. Such precipitates create a dissolution barrier and inhibit ASR in both SCM‐free and SCM‐containing formulations. The outcomes indicate that CN is an efficient and cost‐effective ASR mitigation additive (∼$250–$600 per tonne), particularly in a time of dwindling fly ash supplies and unaffordable lithium prices (>∼$12 000 per tonne).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3