Affiliation:
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
2. College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing China
3. School of Physical Science and Technology ShanghaiTech University Shanghai China
Abstract
AbstractThis study utilized an innovative unalloyed CoCrFeNiTiMo hybrid powder as a joining filler to fabricate high‐strength SiC/HEA/SiC joints via in‐situ reaction. The investigation systematically examines the effects of joining parameters on microstructural evolution and mechanical properties. The filler exhibits high reactivity with SiC, addressing carbon enrichment and low‐strength issues. The resulting joining layer comprises HEA‐rich Si, Mo1.5Cr1.5Si, MoTiC2, and TiC phases. Increasing the temperature facilitates carbon diffusion, transforming TiC into MoTiC2 and forming a MoTiC2‐wrapped TiC structure. At 1400°C for 60 min, the joints attain peak flexural and shear strengths of 312 ± 16 and 137 ± 10 MPa, respectively. Additionally, the joints demonstrate excellent oxidation resistance, with a residual strength of 270 ± 7 MPa after 20 h at 900°C, and favorable high‐temperature mechanical strength, retaining 155 ± 14 MPa at 1000°C. A detailed analysis of the joint formation mechanism is conducted based on experimental results and first‐principles calculations.
Funder
Natural Science Foundation of Shanghai Municipality
National Natural Science Foundation of China
National Key Research and Development Program of China