Micromechanical properties of Al2O3–C refractories with aggregate/matrix interfacial layer by nanoindentation

Author:

Luo Jiyuan1,Ding Donghai1ORCID,Xiao Guoqing12

Affiliation:

1. College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China

2. State Key Laboratory of Green Building in Western China Xi'an University of Architecture and Technology Xi'an China

Abstract

AbstractThe mechanical properties at microlevels are of important meaning for refractories while determining these values is of great challenges. In this contribution, a tailored grid nanoindentation test was employed to determine the micromechanical properties of low‐carbon Al2O3–C refractories featuring reduced brittleness with in situ magnesium aluminate spinel/carbon nanotubes (MgAl2O4/CNTs) compound interfacial layer between the aggregate and matrix. The micromechanical properties, especially Young's modulus (E) and specific fracture energy (Gc) of the aggregate, matrix, and aggregate/matrix interface area of the refractories, were determined and compared. Statistical analysis on the nanoindentation results of the aggregate and matrix in the reference sample and the sample with interfacial layer shows high consistency, which reveals the high feasibility of the method. The median microspecific fracture energy of the aggregate/matrix interface increases from 63.67 J m−2 of the reference group to 132.90 J m−2 of the sample with the compound interfacial layer, which means that higher energy is needed for the initiation and propagation of microcracks within the interfacial layer, accounting for the brittleness reduction of the refractories. Consistent conclusions were drawn from the nanoindentation test at microlevels along with the macrolevel thermal shock test and wedge splitting test.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3