Modifying the high‐temperature dielectric properties of PLZT antiferroelectric ceramics by donor‒acceptor codoping

Author:

Li Linhai12,Zhou Yongxin13ORCID,Chen Xuefeng1ORCID,Wang Genshui14ORCID

Affiliation:

1. Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

2. University of Chinese Academy of Sciences Beijing China

3. School of Physical Science and Technology Shanghai Tech University Shanghai China

4. State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China

Abstract

Abstract(Pb,La)(Zr,Ti)O3 antiferroelectric (AFE) ceramics have attracted considerable interest due to their high‐energy storage density and numerous field‐induced phase transitions. However, the positional equilibrium of the A‐site and B‐site is typically maintained without considering that heterovalent doping of La3+ can induce defects within the material, leading to high‐temperature leakage conduction. In this work, we introduced the acceptor ion Na+ at the A‐site simultaneously and designed Pb0.9175–0.5xLa0.055NaxZr0.975Ti0.025O3 (= 0.01, 0.03, 0.055, 0.07, 0.10) AFE ceramics. The dielectric properties of these ceramics exhibited a consistent pattern of improvement followed by deterioration as the content of Na+ increased. Notably, when = 0.055 (Na5.5), the AFE ceramic demonstrated superior high‐temperature frequency stability with negligible leakage conduction. Impedance spectroscopy analysis suggested that Na5.5 displays the greatest resistance and highest Edc. Concurrently, the thermally stimulated depolarization current indicates that Na5.5 possesses the lowest defect concentration and the largest Ea. This can be attributed to the internal generation of defect dipole clusters (), which effectively restrict the movement of charged defects. These findings suggest that Na5.5 holds significant potential for application and offer insights into the understanding of internal defects in lead‐based AFE materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3