Mechanisms of ice crystal growth in nanoconfined spaces of cementitious composites at low temperatures: Insights from molecular dynamics simulations

Author:

Wang Zhiyu12,Zhou Yuxin12,Feng Yuan12,Zhang Junjie12,Yu Rui134,Yu Zechuan5

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China

2. International School of Materials Science and Engineering Wuhan University of Technology Wuhan China

3. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety Guangxi University Nanning China

4. Advanced Engineering Technology Research Institute of Zhongshan City Wuhan University of Technology Zhongshan Guangdong China

5. School of Civil Engineering and Architecture Wuhan University of Technology Wuhan China

Abstract

AbstractThis study investigates the dynamics of ice crystal growth and stress distribution in nanoconfined spaces using molecular dynamics simulations. First, the interaction between the pore wall and coarse‐grained water is modified, leading to the development of pore models with varying wettability. Subsequently, the process of ice crystal growth within pores of 10 nm diameter is examined under different temperatures and hydrophobicity conditions. Results unveil that ice crystal growth induces substantial energy and enthalpy alterations within the system. Hydrophobic nanopores demonstrate a protective function by limiting ice crystal growth and water transport, thereby mitigating freezing damage. However, hydrophobic nanopores exhibit increased stress levels when saturated with water. The study employs the Zener pinning theory and mass transfer rates to qualitatively scrutinize the thermodynamic and kinetic interplay between the ice crystal interface and the degree of supercooling. These findings offer insights into the mechanisms of ice formation and stress evolution in nanoconfined environments.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3